Stress Distributions in Brazed Single-Lap Joints Under Tensile Loading

نویسندگان

چکیده

Abstract The most common method for characterizing the strength of brazed joints is uniaxial tension testing single lap (SLJs). Standard interpretations depend on assumption that average shear stress at failure key metric in determining joint strength. However, it evident from geometry distributions must be inhomogeneous with lag type concentrations ends overlap regions. Eccentric loading causes rotation and bending stresses amplify result geometric nonlinearity. Unfortunately, details normal braze needed to understand have not been presented. Thus, finite element analysis was used quantify these using 2D elastic elasto-plastic models monolithic stainless steel SLJs. Bending acting were determined over a wide range ratios applied stresses. For all conditions, are highly concentrated narrow region peak exceeding Variations ratio found fully explain experimental data. Common based incorrect. Implications testing, interpretation, design discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solution of Stress Field in Adhesively Bonded Composite Single-Lap Joints Under Mechanical Loadings

In this paper, considering an adhesively bonded composite single-lap joint, a novel approach is presented to predict the peel and shear stress distributions of the adhesive layer for an ASTM standard test sample. In current method, the equilibrium equations are derived using the energy method and based on the Timoshenko’s beam theory. Two solution procedures then are discussed, one of which rep...

متن کامل

Strength Prediction in CFRP Woven Laminate Bolted Single-Lap Joints under Quasi-static Loading using XFEM

This paper is concerned with modelling damage and fracture in woven fabric CFRP single-lap bolted joints that fail by net-tension. The approach is based on the assumption that damage (matrix cracking, delamination and fibre tow fracture) initiates and propagates from the hole in a self-similar fashion. A traction-separation law (based on physically meaningful material parameters) is implemented...

متن کامل

Strength Prediction in CFRP Woven Laminate Bolted Double-Lap Joints under Quasi-static Loading using XFEM

The current paper is concerned with modelling damage and fracture in woven fabric composite double-lap bolted joints that fail by net-tension. A 3-D finite element model is used, which incorporates bolt clamp-up, to model a range of CFRP bolted joints, which were also tested experimentally. The effects of laminate lay-up, joint geometry, hole size and bolt clamp-up torque were considered. An Ex...

متن کامل

Viscoelastic analysis of stress distribution in balanced and unbalanced adhesively bonded single-lap joints with functionally graded adherends under the Reddy model

In this study, shear and peel stress distributions in the viscoelastic adhesive layer of a single-lap joint (SLJ) with functionally graded (FG) adherends are investigated. The study focuses on the effect of different adherend profiles and material composition on the time-dependent stress concentration/distribution in balanced and unbalanced SLJs. For this purpose, the Reddy model is applied to ...

متن کامل

Ratcheting crystal plasticity modeling in microstructure of magnesium alloy under stress-controlled cyclic tensile loading with non-zero mean stress

Todays, the requirement of lowering the vehicle weight for the reduction of the fuel consumption and emissions, one of the methods considered by designers is to use the ligh magnesium alloy under cylclic loadings. In this article, considering the microstructure of the AZ91D magnesium alloy, its crystalline structure, a model for predicting the ratcheting behavior of this alloy was adapted and v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metallurgical and Materials Transactions

سال: 2023

ISSN: ['1073-5623', '1543-1940']

DOI: https://doi.org/10.1007/s11661-023-06960-x